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The Complex Plane
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

A complex number has the form z = x + iy where i is the square root 
of  minus  one.  The  number  x is  called  the  real part  and  y is  the 
imaginary part.  Such a number can be conveniently represented by a 
point in a plane using x and y as Cartesian coordinates.

It  is  also often convenient  to  represent  the same number in polar 
coordinates  z =  r  ∠ θ where  r is called the  modulus of  z and  θ is the 
argument of z.

Simple trigonometry shows that

r = √ x2
+ y2    and   θ = tan−1

( y / x )
(i.e. the 'angle whose tangent is' y/x.)

 A complex function takes as its argument a complex number z and 
returns another complex number w. i.e.

w = f (z ) = u + i v
It  is  the purpose of  this  little  book to illustrate  a wide variety of 

complex functions and to describe their characteristics in the same way 
the a simple graph can illustrate the properties of a real function like 
y = x2  - 1.

But we have a problem. To illustrate a complex function we need 
four dimensional graph paper because both u and v depend on x and y.

Several solutions to present themselves. Firstly we can show how a 
typical figure in the z-plane is mapped onto the w-plane.

Alternatively we can use colours or shading to show how a single 
aspect of the function is mapped across the plane.

Thirdly we can use a 3D plot to show one aspect and colour to show 
the other.

All  these methods are illustrated on the following pages using the 
simple function w = z + c where c is a complex number equal to 1 + 2i.
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The modulus of w = z + 1 + 2i with the  
argument shown in colour

3



There is yet another way we can illustrate a complex function.
Instead of separating the real and imaginary parts of w we can regard 

w as a vector with length r pointing in the direction θ. At each point in a 
matrix of points in the z plane we can plot a small arrow whose length is 
proportional to  r pointing in the direction  θ. The result is a powerful 
sense of the 'flow' of the function, radiating out from the root.

The direction of the arrows is emphasised by the use of a background 
colour – blue for East,  green for North, red for West and yellow for 
South.

Another  very simple function is  w =  cz where  c is,  once again a 
complex number.

Whereas the operation of addition of two complex numbers is pretty 
straightforward (you just add the real and the imaginary parts of each), 
multiplication is a bit more interesting. To see how it works we need to 
use the polar forms of the two numbers not their Cartesian forms. What 
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we do is multiply the moduli and add the arguments. i.e.
cz = r c r z  ∠(θc+θz)

Lets  have  a  look at  the  function  w =  cz where c  =  0.8∠45° (or 
0.56 + 0.56i in Cartesian coordinates.)

The result is to shrink the plane to 80% and rotate it by 45° in an 
anticlockwise direction. Here are the real and imaginary plots. Note that 
they are rotated clockwise, not anti-clockwise.

The modulus plot looks much the same but the argument has been 
rotated by 45° clockwise. (The colours are coded as follows: 0° is blue, 
90° is green, 180° is red and 270° is yellow.)
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The 3D (modulus/argument) plot of w

The vector plot is a bit surprising. It is not rotated by 45°; instead, 
every vector is rotated by 45°. This gives the overall flow a pleasing 
swirling motion around and away from the origin.
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Polynomial Functions
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Things  start  to  get  really  interesting  with  even  the  simplest  of 
polynomial functions: f(z) = z2.

In  the  last  chapter  we  said  that  when  two  complex  numbers  are 
multiplied together,  the moduli  are  multiplied and the arguments  are 
added. If the two numbers are the same, the modulus of the number 
must be squared and the argument doubled.

Notice how letter  F has been distorted by being both rotated and 
stretched. The horizontal and vertical lines of the original Z plane have 
been bent into hyperbolae.

Note how a circle is transformed into a cardioid which wraps twice 
round the origin (because of the doubling of the argument).
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The real and imaginary parts of z2 look like this:

We  can  explain  these  graphs  as  follows.  Since  z = x +  iy, 
z2 = x2 – y2 + 2ixy.  The  real  part  of  this  is  x2  –  y2.  This  will  be  zero 
whenever  x = y which accounts for the diagonal cross. A cross-section 
along the X axis (where y = 0) will be a positive parabola while a cross 
section across the Y axis will be an inverted parabola.

These  two  graphs  can  be  combined  into  one  with  the  real  part 
portrayed in 3D with the imaginary part in colour. It has the familiar 
shape of a Pringle.

The real and imaginary parts of w = z2
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But, as always, the most instructive plot is the vector plot.

The first and most obvious feature is the fact that the further you go 
away from the origin, the longer the arrows become. This reflects the 
fact that the modulus of z2 is the square of the modulus of z. (Here the 
modulus has also been indicated in shades of grey.)

But what about the doubling of the argument? Where is that feature?
Imagine that you have a small compass which magically points in the 

direction of the arrows when placed in the w plane. Place the compass at 
the point (2,0) It will point East. Now imagine moving it anti-clockwise 
slowly round the origin in a circle of radius 2. When you get to the point 
(0,2) it will point West and when you get to (–2,0) it will have made one 
complete revolution. When you have completed the circle the compass 
will have rotated twice! We have here an example of what is called a 
winding number and in this case it has the value 2.1

1 Strictly speaking this is the known as the index of the point. As you can see from 
the map on page 7, the image of a circle which encloses the origin winds round the 
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This doubling of the rate of rotation is obvious when you look at the 
coloured map of the argument. A complete rotation around the origin 
takes you from blue through green, red, yellow, blue, green, red, yellow 
and back to blue.

It is worth taking a little time to think how all these plots will be 
modified if we consider the general case where w = z2 + cz + d (where c 
and d are complex numbers of course).

Consider the function w = z2 + d where d = –(1 + 2i). If this were an 
ordinary (real) function (e.g. y = x2 – 1), the addition or subtraction of a 
constant  would  simply shift  the parabola up or  down the  Y axis.  In 
exactly  the  same  way,  the  complex  function  retains  its  (four 
dimensional) shape but is shifted in such a way as to pass though the 
(four dimensional) point (0, d). If you find it difficult to thinking in four 
dimensions, here are some plots of the function w = z2 – (1 + 2i).

First the real and imaginary parts.

The crosses have been replaced by rectangular hyperbolae because 
the 'Pringle' (of the real part) has been shifted down so that its saddle is 
at -1. Likewise the 'imaginary Pringle' is shifted down so that its saddle 
is at –2i.

The modulus plot shows the original single root at the origin has split 

origin twice. In general we can say that the winding number of the image is equal 
to the index of the point. It is this fact which (partially) justifies my talking about 
the winding number of a point.
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into two roots at ±√(1 + 2i).

The 3D plot of of  w = z2 – (1 + 2i)

Before we look at the vector plot of this function, take a look at the 
plot of the simpler function w = z2 - 1

The vector plot of  w = z2 – 1

Now take your imaginary plotting compass and trace its rotation as 
you move it round the small circle that encloses one of the roots in an 
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anti-clockwise direction. It rotates once, anti-clockwise, doesn't it. Now 
trace it round the large ellipse which encloses two roots. You will not be 
surprised  to  find  that  it  rotates  twice.  This  seems  to  suggest  the 
following rule: in any closed circuit,  a plotting compass will rotate  n 
times  in the same direction where  n is the number of roots which the 
circuit encloses. If this is so, then the compass should not rotate at all if 
the circuit doesn't contain any roots. Check this with the small circle in 
the top right.

It  follows that every point in the plane has an associated winding 
number (i.e. the winding number of an infinitesimal loop enclosing the 
point). For the great majority of points the winding number is zero but 
the two roots are obviously different. They are examples of what I call 
exceptional points which I define as any point whose winding number is 
not zero. We shall meet other kinds of exceptional point soon.

Now lets look at the function w = z2 – (1 + 2i) again:

The  roots  have  moved  but  the  winding numbers  are  the  same as 
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before.
Returning for a moment to the general quadratic  w =  z2 +  cz +  d, 

altering the other coefficient of z does not add anything essentially new. 
When c = 0 the two roots are always symmetrically placed with respect 
to  the  origin.  In  the  general  case  the  roots  can  be  anywhere.  For 
example, if the roots are at a and b, (a and b being complex numbers of 
course) then

w = (z – a)(z – b) = z2 – (a + b)z + ab.
Now that we understand the quadratic function, it does not take too 

much intelligence to predict  what the general cubic would look like. 
Here are some plots for the function w = z3 – 1.

The lines where the real part is zero obey the relation x(x2 – 3y2) = 1 
and the imaginary ones (3x2 – y2)y = 0.
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The 3D plot of of w = z3 – 1

The three complex roots of unity are  clear  to  see in the modulus 
plots.

The vector plot is, as always, particularly interesting:

If you navigate your plotting compass round all three roots, you will 
not be surprised to find that it rotates three times. The winding number 
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of this loop is therefore three.
Nor will you be surprised to find that the winding number of the loop 

which encloses the root (1, 0) is one. In fact, the winding numbers of the 
other two roots are also one but there is something different about these 
loops. Instead of the plotting compass pointing directly away from or 
directly towards the root, it seems to point around the the root. It seems 
as if the (1, 0) root is a kind of source but the imaginary roots are more 
like  whirlpools. We shall discuss this again but for now let us explore 
another class of functions.
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Reciprocal Functions
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Now  lets  turn  to  a  really  fascinating  function  –  the  reciprocal 
function w = 1/z. This turns a complex number r  ∠θ into 1/r  –θ, that is∠  
to say the modulus is reciprocated and the argument negated.

First the mapping plots.

Notice how the whole of the z plane outside the unit circle is mapped 
onto the w plane inside the circle and vice versa. Notice too how all the 
straight lines are mapped into circles and how all the circles intersect at 
right angles.

It is also notable that circles are mapped onto circles and that any 
circle passing through the origin is mapped onto a straight line.
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Obviously the point (0, 0) is special in that it is not mapped onto any 
finite point in the w plane as is clear in the following 3D plots. Points 
like this are called singularities.

The real part of  w = 1/z The modulus of  w = 1/z

The modulus is always positive so the equation z2 = 0 has no finite 
roots.

Here is the vector plot.
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Now if you take your plotting compass for an imaginary excursion 
round  the  origin,  you  will  find  that  it  rotates  once  in  the  opposite 
direction  (and  the  order  of  the  colours  through  which  you  pass  is 
reversed).  The  winding  number is  therefore  –1.  This  makes  sense 
because the function can be written w = z-1. Note that it is not just the 
roots of a function which are exceptional points; so are the singularities.

How would you describe the behaviour of the flow in the region of 
the singularity? Mathematicians refer to it as a 'saddle point' but I prefer 
to call it a 'collision point'.

Now  lets  look  at  another  reciprocal  function  which  has  some 
interesting properties –  w = 1/(z2  –1). This is what its vital plots look 
like:

The modulus of  w = 1/(z2 - 1)
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Obviously  there  are  two  singularities  and  these  points  each  have 
winding number –1. The winding number of the function as a whole is 
therefore –2. Both the singularities are collision points  (saddle points).

(You can see why I don't like the term 'saddle point'. Look at the 3D 
plot of the modulus. There is as clear an example of a 'saddle point' as 
you  could  wish  for  –  but  it  is  at  the  origin,  not  at  either  of  the 
singularities!)
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Sources, Sinks and Whirlpools
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

The rational quadratic function is defined as follows:

f (z)=
z + a
z + b

and its general features can be illustrated using a = –1 and b = +1.
Looking at  the modulus plot,  what would you predict  its  winding 

number was?

The modulus of  w = (z – 1)/(z + 1)

You can easily see that it has a root at (1, 0) and a singularity at (–1, 
0).  These  will  have  winding  number  +1  and  –1  respectively  so  the 
overall winding number will be zero – a fact which you can check by 
inspecting  the  following  vector  plot  (in  which  the  vectors  are 
superimposed on the modulus plot so that you can clearly distinguish 
the singularity on the left from the root on the right).
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You can also confirm that the root is a source and the singularity is a 
collision point.

Now in the case of the function w = z3 – 1, we found that two of the 
roots were whirlpools. This raises two interesting questions. Firstly, how 
can we determine in advance whether a root is going to be a source, a 
sink or a whirlpool? and secondly, why are there three different types of 
root points but, apparently, only one type of collision point?

Well,  appearances  are  deceptive.  The  human  eye  is  quick  to 
distinguish between a source and a whirlpool but although there are just 
as many different types of collision point, the difference is a little more 
subtle.

Have a look at the vector plot of the function w = (z – i)/(z + i) which 
has a root at (0, i) and a singularity at (0, –i).
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The  root  is  obviously  a  pure  whirlpool  and  the  singularity  is  a 
collision point. But there is a difference between this collision point and 
those we have met before. Every collision point we have met so far has 
a pair of lines which we might call the lines of influx and efflux. These 
lines are always at right angles. When the singularity lies on the real 
axis, the influx and efflux lines have always been parallel to the axes; 
but in the above case the lines are at 45° to the axes. In general the 
influx and efflux lines can be at any angle depending on the precise 
function in question and any collision point is characterised by the angle 
which the lines of efflux make with the real axis.

In fact it  is possible to turn any source, sink or whirlpool into an 
equivalent collision point by using what is known as a Pólya plot of the 
function. This is exactly the same as the vector plot except that we plot 
the complex conjugate vector. (This is the vector whose angle has been 
negated.) A source is turned into a collision point whose characteristic 
angle is 0°; a sink into one whose angle is 90° and clockwise and anti-
clockwise whirlpools into +45° and -45° collision points respectively.
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Note how the collision point has been turned into a whirlpool and the 
whirlpool into a 45° collision point.

We  can  summarise  our  findings  so  far  by  categorising  all  the 
exceptional points we have met using just two numbers: a) the winding 
number Nw and b) the initial angle ψ. The latter is defined as the angle 
which a  vector  close to  the point  makes  with the positive  real  axis. 
Using this scheme, an exceptional point with a winding number of +1 
and an initial angle of zero is a source. Increase the initial angle to 90° 
and we get an anticlockwise whirlpool. With  ψ = 180° we have a sink 
and if  ψ = 270° (or – 90°) we have a clockwise whirlpool.

The following series  of vector  plots  show  the root of the function 
w = cz as c moves round the unit circle:
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 0°                               45°                              90°                              135°

         
 180°                             225°                              270°                              315°

In a similar way, a collision point has winding number –1. If  ψ = 0° 
then the lines of efflux lie along the real axis. As  ψ is increased the 
efflux line rotates at half the speed so that when ψ = 90° the efflux line 
is at 45° to the real axis. When  ψ has rotated all the way round, the 
efflux lines will be back where they were.

The  following  series  of  vector  plots  show  the  singularity  of  the 
function w = c/z as c moves round the unit circle:

         
 0°                               45°                              90°                              135°

         
 180°                             225°                              270°                              315°
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A typical  quadratic  equation  has  two  roots,  each  with  winding 
number 1. But there are degenerate cases where the two roots coalesce 
into one with a winding number of 2. Obviously this cannot be a source, 
or a sink – or even a whirlpool. So what sort of point is it?

The best name I can come up with is a dipole point. (The flow lines 
have the same sort of look as the field lines round a bar magnet or a pair 
of  equal  and  opposite  electric  charges  but  you  should  note  that  the 
magnitudes are all wrong.) The name also happily suggests the winding 
number.)

The same sort of thing happens with singularities. Take a look at the 
vector plots of w = 1/(z2 – 0.5) and w = 1/z2.

The vector plot of  w = 1/z2

As we reduce the constant in the denominator, the two singularities, 
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each with 4 lines of influx and efflux merge into one singularity with 6 
lines! Lets call this a di-collision.

Similarly if we coalesce three roots, each with winding number +1, 
we will obtain what we might call a 'tripole' with winding number +3; 
and  three  collision  points  will  make  a  'tri-collision'  with  winding 
number -3.

Here are four more rather interesting plots, each with the associated 
Pólya plot.

The first is the reciprocal of (z2 – 1):

It has singularities at ±1 and, as you can see, these are both standard 
collision points with winding number ±1 one of which has initial angle 
0° and the other 180°.
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The Pólya  plot (which is the complex conjugate of the vector plot) 
consists of a source and a sink.

The  reason  why  the  Pólya  plot  is  particularly  interesting  is  that, 
because  the  function  is  a  reciprocal  function,  the  magnitude  of  the 
vectors gets smaller as you move further away from the sources. This 
plot looks a lot more like the magnetic field round a bar magnet or the 
electric field near a pair of equal and opposite charges.2

If we replace the numerator with z this is what we get:

We still have the two singularities at ±1 (but this time with the same 
initial angle) but a root has appeared at z = 0. Now instead of having a 
source and a sink,  the  Pólya  plot shows two sources and a collision 
point in between.

Next we shall replace the numerator with i:

2 It isn't exactly right because these functions are based on a simple reciprocal law 
while magnets and charges obey an inverse square law. The electric field near a 
long straight wire does, however, obey a simple reciprocal law so these fields could 
represent the fields near an electricity cable, for example.
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The effect of this is to rotate all the vectors by 90°. As we have seen 
(page  24), this rotates the lines of influx and efflux by 45° so that the 
lines in the vector plot no longer join hand in hand, as it were; they 
merge asymptotically. Likewise on the  Pólya plot, the two singularities 
are turned into whirlpools which rotate in the opposite direction. This 
makes the field resemble that round a pair of equal charges.

Finally, to complete the set we put the numerator equal to iz:

As before this  introduces a  root at  the origin and the  Pólya  plot 
shows the effect produced when two clockwise whirlpools exist side by 
side.

28



It  should be clear  from these examples that  the study of complex 
functions  has  important  applications  in  many  disciplines  in  applied 
science such as electromagnetism and fluid dynamics.

As  a  final  example  which  is  of  particular  interest  to  aeronautical 
designers we shall briefly consider the function  w =  z + 1/z or, if you 
prefer, w = (z2 + 1)/z. Here is its map.

Notice how the circle has been transformed into a quite convincing 
aerofoil shape.

Now the flow lines of an airstream flowing past a circle are fairly 
easy to work out from first principles and it turns out that this transform 
correctly  transforms  the  flow  lines  as  well  thus  giving  designers  a 
simple way of calculating the flow of air over a wide variety of possible 
wing shapes.

The flow of air over a simple aerofoil as modelled by a complex function
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Complex Differentiation
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Perhaps the most obvious feature of a conventional graph of a real 
function is the fact that the gradient of the function varies from place to 
place and that, where the function reaches a maximum or a minimum, 
the gradient is necessarily zero.

Complex functions do not have an obvious 'gradient',  nor do they 
have 'maxima' and 'minima'. But we can extend these concepts into the 
complex domain by applying the same rules and processes which we 
use to define the gradient of a real function to a complex one.

To measure the gradient of a real function we measure how much the 
function changes by when we increase the variable x by a small amount. 
We then divide the change by the increase. More formally, the gradient 
of a real function is defined as the limit of

f (x + δ x) − f (x)

δ x
as δx is made smaller and smaller.

In the same way, we define the 'gradient' of a complex function by 
increasing the variable z by a small amount, measuring the change in the 
function and the dividing the latter by the former.

But we have a problem here. In what direction should we 'increase' 
the variable z? z is a sort of vector and we could, in principle, 'increase' 
it  in  any direction.  Fortunately,  however,  we have a lucky escape.  It 
turns out that all the functions that we have looked at so far (and all 
those that we shall consider later) have a remarkable property. It doesn't  
matter which direction you choose to move z, the 'gradient' will always  
work out to be the same! (Mappings which have this important property 
are called analytic functions.)

One  other  thing.  We  should  stop  calling  the  quantity  we  have 
calculated the 'gradient' because it is, of course, a complex number not a 
real  one.  Tristan  Needham  has  coined  an  excellent  word  for  this 
quantity:  he calls  it  an  amplitwist.  The reason for this  is  as  follows. 
Because  of  the  remarkable  property  of  an  analytic  mapping,  if  you 
consider what happens to a tiny figure like a letter F, you will discover 
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that, as you move it around the z plane, its image in the w plane remains 
unaltered; the only thing that happens to it is that it is either expanded 
(or shrunk) and it is rotated. If the expansion factor is A and the angle of 
rotation  is  α  then  the  amplitwist  at  that  point  in  the  z plane  is  the 
complex number A  ∠α. For an example, consider the function w = z2.

The letter F is positioned at the point (1.5, 1) in the  z plane. When 
mapped by the square function it remains recognisably a letter F but it 
has been expanded by what looks like a factor of about 4 and rotated by 
about 30°. In other words, the amplitwist of the z2 function at the point 
1.5 + i  is  4  30∠ ° – or, if you prefer, 3.5 + 2i.

Obviously this is only an approximate guess – but the principle is the 
important thing: it is possible to assign a new complex number to every 
point  in  the  z plane  which  effectively  tells  us  how  the  function  is 
changing  in  the  region  of  that  point,  just  as  the  gradient  of  a  real 
function tells us how the function changes in that region.

The process of calculating the amplitwist of a function is, of course, 
called differentiation and, amazingly, you can use exactly the same rules 
to  differentiate  a  complex  function  as  you  use  with  a  real  one.  In 
particular, the amplitwist of z2 is 2z. (and at the point 1.5 + i  it is exactly 
3 + 2i so our approximate guess was not too far out after all.)

Now we have figured out how to differentiate a complex function, it 
is  of  great  interest  to  investigate  those  special  places  where  the 
amplitwist is zero. Consider the function w = z2 – 1. This has two roots 
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at (1, 0) and -1, 0) which we have noted are exceptional points with 
winding number +1.

The amplitwist of this function is, of course, 2z and this is zero in 
just one place – the origin.

Now what, exactly does it mean to say that the amplitwist is zero? It 
means that the amplitwist vector is 0 + 0i or in polar coordinates 0 ???.∠  
The problem is clear. If the vector has zero magnitude then its direction 
is indeterminate. A tiny letter F placed at this point would be shrunk 
down to such a small size that it is impossible to say what its orientation 
is.  Obviously,  places  where  the  amplitwist  is  zero  are  much  more 
significant than either the roots of the function or its singularities; they 
are places where the whole analytic nature of the function breaks down. 
Everywhere else, the function behaves predictably, if bizarrely, but here, 
anything goes.  They are like the centre of a black hole – where the 
whole of a region has been compressed to an infinitesimal point.

It is with good reason, therefore that places where the amplitwist is 
zero are called critical points.

But what exactly do we mean when we say that the 'analytic nature 
of the function breaks down' at a critical point? To answer this question 
we need to ask ourselves what exactly is the property that makes some 
functions 'analytic'. So far, all we have said is that analytic functions are 
those functions which have the same amplitwist, whatever direction you 
measure it in. Now consider the effect of an analytic function on a small 
letter V whose apex B is placed at the point in question and whose arms 
A and C make an angle θ at the apex. Now what we are saying is that, 
however the V is oriented, an analytic mapping will always amplify and 
twist it by the same amount. In other words, the angle θ will remain the 
same.  You can see what I mean if you look at the transformation of the 
letter  F  on  the  previous  page.  The  letter  is  amplified,  twisted  (and 
slightly distorted) but all the angles between the lines are exactly 90°. 
Mappings  which  preserve  angles  like  this  are  called  conformal 
mappings and all analytic mappings are conformal. (It is also true to say 
that all conformal mappings are analytic but I shall not bother to prove 
this.)
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So now we possess a powerful tool to test whether or not a given 
mapping is  analytic or not.  We let  our test  letter  V wander over the 
mapping  and see  whether  the  angle  θ stays  the  same.  Let's  test  the 
function w = z2 – 1. All seems to be well; the angle is unchanged; but 
when we bring the test letter close to the origin we begin to run into 
problems. Firstly, the image of our letter gets rather small so we have to 
magnify our plot of the w plane and when we do this we see that the V 
has become quite distorted like this:

However, careful measurement of the angle at the apex reveals that 
the angle is unchanged. On the other hand, we have to note that the 
angle between the (straight) line AB and the (straight) line BC is rather 
larger than the angle at the apex.

Now we take the plunge and place B exactly on the origin – the 
critical point of this function. What happens now?

The letter has shrunk so much we can barely see it but it is just big 
enough to measure the angle ABC which turns out to be 2θ. This should 
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be no surprise as the whole point of the quadratic function is  that it  
doubles the argument of rays extending from the origin. But what has 
happened to the angle at the apex B? Is it  θ or is it 2θ?

On page 205 of Needham's excellent book he says of this situation 
'When the  z2 mapping acts on a pair of rays through the critical point 
z = 0, it fails to preserve the angle between them ; in fact it doubles it.'

Now I find this statement either false or at least, very misleading. It 
seem to me to be unreasonable to claim that the function is conformal 
everywhere except at the critical point. Yes the critical point is special – 
but it is not that special. It is not the case that as you move the apex B of 
our test letter along a line which passes through the critical point the 
angle at the apex suddenly doubles at that point. The truth of the matter 
is – you can't measure the angle at the apex because the test object has 
shrunk to zero size. It is better to say that at the critical point the angle 
becomes indeterminate.

Notwithstanding my silly quibbles over phraseology, it is clear that 
something special  does indeed happen at  the critical  point where the 
amplitwist is zero.

Consider now the function  w =  z3 + 2z2. This has a double root at 
z = 0  and  a  third  root  at  z =  –2.  Using  the  standard  methods  for 
differentiating a function we find that it has critical points at the origin 
and at –4/3. All these features are easily visible on the argument maps 
below:
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It is of interest to note that the winding numbers of the two roots are 
+2 (at the origin) and +1 and that the winding numbers of the critical 
points  are  both  +1.  In  general,  the  total  winding  number  of  the 
amplitwist function will be one less that the total winding number of the 
original function because the act of differentiation reduces the power of 
a polynomial by one.

If the winding number of a critical point is greater than 1, it means 
that this point is 'even more critical' than usual!

It  might  be  worth  briefly  mentioning  here  something  about  non-
analytic functions. We have shown that the mapping w = z2 is conformal 
and  hence  analytic.  Often,  for  computing  purposes,  we  break  this 
formula down into its real and imaginary parts i.e.

u = (x2
− y2

)
v = 2 xy

But there is no reason why we should stick to this pair of functions. 
Any functions will provide us with a mapping of some kind. So what 
makes some mappings conformal and others not?

Well it  is pretty easy to see that if two functions  f(z) and  g(z) are 
conformal, then their sum  f(z) + g(z) will also be conformal. It is also 
true  to  say (but  a  bit  more  difficult  to  prove)  that  the  product  (and 
quotient)  will  also  be  conformal,  as  is  c f(z)  where  c is  a  complex 
constant.

Now it is obvious that the function  f(z) = z is conformal because this 
mapping  doesn't  change  anything  at  all.  This  means  that  cz is  also 
conformal; so is cz2 + z; indeed so is any polynomial function in z. Thus 
all  the functions we have so far considered are conformal and hence 
analytic.

But an arbitrary mapping will not, in general be conformal; it will not 
have a consistent amplitwist at every point; it will not be differentiable; 
it will not be analytic. In short, it will not be nearly so interesting.

(This  also  gives  us  a  clue  as  to  why  some  mappings  generate 
consistent  fractals  like the Mandelbrot map while others result  in an 
unattractive jumble.)
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Multivalued Functions
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

All the polynomial functions we have considered so far have been 
rational functions – i.e. functions involving only integral powers of  z. 
We  need  to  consider  now  what  happens  if  we  permit  the  use  of 
fractional powers of z like the square root etc. In particular, we shall be 
interested to find out what happens to the concept of winding number 
(which is, by definition, an integer) when applied to a vector map of an 
irrational function.

Lets start with the map of w = √z.

You may remember that the square function squares the modulus and 
doubles the argument. In the same way, the square root function takes 
the square root of the modulus and halves the argument. This is why the 
whole of the z plane is mapped onto half of the w plane.

Except, of course, that we have not taken into account the fact that 
the square root function has two possible values. Here we have only 
plotted the positive value. To complete the picture imagine the positive 
half rotated about the origin by 180°.

Now lets have a look at the argument of the function:
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Take  a  walk  round  the  unit  circle  starting  from (1,  0)  where  the 
argument is zero (blue in the left hand map). As you cross the imaginary 
axis  the  argument  increases  to  45° and enters  the  green  region.  But 
when we reach (-1, 0) we have to jump to the right hand map (i.e. the 
negative root) to continue our journey smoothly and when we reach (1, 
0) again the argument has only got to 180°. We need to make another 
complete circuit before the argument reaches 0 again.

To make a model of this, cut out two circular pieces of paper A and 
B. Make a single radial cut in each piece. Now place A on top of B and 
sellotape one of the cut edges of A to the opposite cut edge of B. Now 
the tricky bit! Sellotape the other cut edge of A to the other cut edge of 
B. I know this can't be done in ordinary 3D space but it can be done in 
4D!

It is clear that the origin is a very strange sort of exceptional point. It 
is technically called a  branch point. Lets try to determine its winding 
number. Here is the vector map (of the positive function).
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Look carefully at the negative real axis. You will see that the arrows 
on each side point in opposite directions. This indicates that there is a 
discontinuity here3.  As we have seen,  in order to make the argument 
rotate  once,  we  have  to  make  two  circuits  of  the  branch  point. 
Alternatively,  in one circuit of the branch point, the argument rotates 
through half a revolution. Either way, the winding number of this point 
is ½.

Obviously the pole of the function w = 3√z will have winding number 
1/3 and you would need three discs of paper to model it.

If  the  exponent  was 2/3,  the  winding number  would  also be  2/3. 
What this means is that in 3 circuits of the pole the vector would rotate 
twice.

3 Actually there is nothing special about the negative real axis. It only appears so 
because I have chosen to use only the principal arguments from -π to +π. You 
could, in principle make any cut you like as long as it terminates on the branch 
point.
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And if the exponent was itself irrational (e.g. 1/√2) then no whole 
number  of  circuits  of  the  pole  would  result  in  a  whole  number  of 
rotations of the vector. You would need an infinite pile of discs to model 
the behaviour of the function!

To some extent the picture is confused because the branch point of 
√z is also a root of the equation. Let's look at the function w = √z – 1. 
The single root is now at +1 but the branch point is still at the origin as 
the vector plot shows:

As before the cut has been made along the negative real axis and the 
arguments  on  each  side  of  the  cut  are  different  –  but  they  are  not  
opposite.  Notwithstanding  this,  if  we  take  a  walk  round  the  branch 
point, when we step from the positive root to the negative root as we 
cross the branch cut, the argument cannot jump discontinuously from 
one value to another – there are no discontinuities in this function.

The puzzle is resolved when we look at both discs:
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In  the  first  disc  on  the  left  (which  uses  the  positive  root)  the 
argument rotates from blue (0°) through green (90°) to about 135°. Then 
we step onto the second (negative root) disc which takes us through  red 
(180°) to  about  225°.  Finally we step back onto the positive disc to 
complete the journey through yellow (270°) back to zero. The winding 
number of this branch point is clearly ½. Even though one of the discs 
takes us through 3 times as much angle as the other, just two rotations 
are needed to complete one circuit of the argument.

Now  we  noted  earlier  that  critical  points  are  places  where  the 
amplitwist of the function (i.e. the derivative) is zero. What can we say 
about the amplitwist of a multifunction at its branch point?

Well, the derivative of √z is 1

2 √ z
 and it has a singularity at z = 0. In 

fact I believe that I am right in saying that the amplitwist of a branch 
point is always infinite. The converse is not true, however. Consider, for 
example, the function  w = 1/z. Its derivative is –1/z2. Obviously both 
have singularities at z = 0, but 1/z does not have a branch point because 
it is not a multifunction.
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Another interesting function is  w = √ z2
− i . Its roots are at (1, 1) 

and -1, -1) and its derivative has singularities at both these points too.
Here are the argument plots of both the function and its derivative.
First the function:

and its derivative:

(Well they are nothing if not colourful!)
To make a model of this function, make two curved cuts in two discs 

of paper A and B. (Actually the cuts can be anywhere as long as they 
end on the two branch points. The ones shown in the images are simply 
the  result  of  the  arbitrary  decision  to  restrict  the  arguments  to  the 
principal value.) Now, as before, sellotape A to B in two places – and 
now take a trip into 4 dimensions and sellotape the other two edges.
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Series Functions
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

Let us define a new function as follows: (I shall  use bold type to 
distinguish the complex function cos(z) from the real function cos(x).)

cos( z) = 1 −
1
2!

z 2
+

1
4 !

z4
−

1
6 !

z 6
+ ... (1)

All  the  terms  are  analytic  so we can  be confident  that  the  whole 
function is analytic too. We can also be confident that the series will 
converge  for  all  values  of  z because  the  factorial  function  increases 
more rapidly than any power.

This is how it works: taking z ≈ 2 + i, the first term takes us to P, the 
point (1, 0), then we subtract ½ z2 which takes us to Q; the next term 
takes us to R etc. Eventually we converge onto the point S.

Now lets see if we can predict what the features of this function will 
look like.

If we restrict ourselves to the real axis – i.e. if we put  z =  x,  our 
function becomes:

cos(x) = 1 −
1
2 !

x2
+

1
4 !

x4
−

1
6!

x6
+ ... (2)

which we recognise as the expansion of cos(x).
What this means is that a slice through the complex function along 

the real axis will look like a cosine curve. What is more, all these points 
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are  themselves  real  –  that  is  to  say,  they  have  zero  imaginary 
component. This means that the modulus of the function will also look 
like a cosine curve.

What about a slice along the imaginary axis? These are points where 
z = iy. Substituting this into equation (1) and remembering that i2 = – 1 
we get:

cos (i y ) = 1 +
1

2 !
y2

+
1

4 !
y 4

+
1

6 !
y6

+ ... (3)

Now this function is none other than the hyperbolic cosine – cosh(y). 
Once  again,  we  note  that  all  the  terms  are  real  so  the  imaginary 
component of the function is zero along the imaginary axis too.

The  real  and imaginary axes  are  obviously rather  special  and  we 
cannot hope to predict what the result be in the general case but we can 
get a computer to do this for us and the results are as follows: First the 
real component.

The real component of cos(z)

You can clearly see the cosine curve along the real axis and the cosh 

43



curve  along  the  imaginary  axis.  The  plot  also  shows  the  imaginary 
component in colour and you can verify that the imaginary component 
is zero (white) along the axes too.

What comes as a bit of a surprise is that the whole function repeats 
every 2π along the real axis. This is not at all obvious from equation (1) 
but the reason will (perhaps) become clear later.

Now the modulus plot:

The modulus of cos(z)

See how it dips down to zero at certain points along the real axis 
(where cos(z) = 0). Another interesting thing to note is that the argument 
(shown in colour) is a series of parallel stripes. What this means is that 
the  argument  of  the  function  does  not  depend  on  the  imaginary 
component of z, only the real component.

All very mysterious!
The sin function has the following series expansion:

sin(z ) = z −
1

3!
z3

+
1
5!

z 5
−

1
7 !

z7
+ ... (4)
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Applying the same arguments as before it is easy to show that the 
slice  along the  real  axis  is  a  (real)  sine curve and a  slice along the 
imaginary axis is an (imaginary) hyperbolic sine (sinh) curve. (That is to 
say, the values of the function have zero real component and are entirely 
imaginary.) The only essential difference to the real and modulus plots 
is that they are shifted by π/2 along the real axis.

Now we shall consider the following function which we shall call 
exp(z):

exp(z ) = 1 + z +
1
2!

z 2
+

1
3!

z 3
+

1
4 !

z4
+ ... (5)

Putting z = x it is clear that the slice along the real axis is the familiar 
exponential curve.

Putting z = iy we get

exp( i y) = 1 + i y −
1
2!

y2
− i

1
3 !

y3
+

1
4!

y4
+ ... (6)

Gathering together the real and imaginary terms we have:

exp(i y) = (1 −
1
2 !

y2 +
1
4 !

y4 + ...) + i( y −
1
3 !

y3 +
1
5 !

y5 − ...) (7)

which is obviously means that:
exp( i y) = cos y + i sin y (8)

Now the modulus of this number is √(cos2 x + sin2 y) and its argument 
is just y. So along the imaginary axis. The real component of exp(z) will 
be a cosine curve; the modulus will be constant and the argument will 
be equal to the imaginary component of z.

Lets  see  what  this  function  actually  looks  like  and  verify  these 
predictions:  The  real  component  is  a  cosine  curve  which  gets 
exponentially larger as it  sweeps along the real axis. (The imaginary 
component is a sine curve which does exactly the same.) The modulus 
looks like a ski jump –  a flat sheet bent into an exponential curve while 
the argument consist of parallel stripes parallel to the real axis.

To put it another way, it appears that the modulus of exp(z) is ex and 
the argument is y.
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The real component of exp(z) with the imaginary component in colour

The modulus of exp(z) with the argument in colour

This is all very important and very interesting but we haven't really 
got to the bottom of  why these functions take these shapes.  We may 
have deduced what the shapes must be along the two axes, but there 
doesn't seem to be any a priori reason why the shapes should remain the 

46



same along other lines. Why, for example, do all the slices through the 
real part of the cos(z) curve parallel to the real axis have the shape of a 
cosine curve? Why is the modulus of the exp(z) curve constant along all 
the lines parallel to the imaginary axis?

To  find  the  answers  to  these  questions  we  must  look  at  the 
derivatives of these functions – i.e. their amplitwist.

First let us recall that it is a defining characteristic of the exponential 
function ex that it is equal to its own derivative. It is this property that 
enables us to calculate the coefficients of the terms in the expansion of 
ex namely:

e x
= 1 + x +

1
2 !

x2
+

1
3 !

x3
+

1
4 !

x4
+ ... (9)

Since complex polynomials can be differentiated in exactly the same 
way as real ones, we can confidently say that the amplitwist of  exp(z) 
must be exp(z) at all values of z.

So lets have a look at the vector map of exp(z):
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You can see that the lines of equal argument are straight and parallel 
to the real axis. My question, therefore, is this – why are the lines of 
equal argument parallel to the axis and not, say, rectangular hyperbolae?

Now with an ordinary graph, you can see at once how the gradient of 
the graph differs from place to place, but it is very difficult, not to say 
all but impossible, to look at a vector map and immediately deduce the 
map of its amplitwist. But this vector map is unique because it is  the 
only vector map where it is everywhere equal to its own amplitwist. This 
does not quite answer my question but I am confident that a proof of my 
statement about the lines of equal argument can be deduced from the 
italicised sentence above even though I cannot quite see my way to a 
simple proof at the moment.

Likewise, I am confident that my question about the cos function can 
be answered by starting with the defining characteristic of that function 
–  namely  that  its  second  order  amplitwist  is  equal  to  the  negative 
function – as should be immediately obvious (!) from its vector plot:
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Power Functions
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

If you have read this book so far, you may have been wondering why 
I have rigorously avoided using the exponential notation ez where z is a 
complex  number.  The  answer  to  this  is  that  any  new  notation  is 
meaningless until we define its meaning – and it is not at all obvious 
how we should go about defining what we mean by a quantity ez where 
z is a complex number.

On the other hand, whatever it means, we require that, by analogy 
with the real function ex, the derivative of ez must also be ez.. Now we 
have already established that the derivative (or amplitwist) of exp(z) is 
exp(z) so this basically establishes that ez = exp(z) . All we have to do 
now is verify that ez obeys the usual rules for exponents namely that ez 

squared  is  equal  to e2z and  that ez+1 is  equal  to  e ez etc.  If  we take 
equation (5) as our starting point this is not an easy thing to do and, as 
this is not a maths text book, I do not propose to do this. Take it from 
me – the rules do apply and we can manipulate complex exponents as 
easily as real ones.

Bearing this in mind, how do we calculate the real and imaginary 
components of ez where z = x + iy?

Well, for a start, ex + iy equals ex.eiy. Now we have already established 
that  eiy (=  exp(iy)) = cos  y +  i sin  y  so we come to one of the most 
important relations in all of mathematics:

e(x + i y) = e x(cos y + i sin y)

This is known as Euler's formula and it allows us to write any complex 
number not just as the sum of its real and imaginary parts but as the 
product of its modulus r and an exponential function of its argument θ: 

z = r ei θ
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Now that we know how to calculate ez we can plot its map:

As you move the test object (here a letter F) vertically upwards, the 
image of the letter rotates round and round the origin, returning to its 
original position at every multiple of 2π. As you move the letter to the 
right, the image moves radially away from the origin according to an 
exponential formula. Essentially the X coordinate becomes the modulus 
and the Y coordinate becomes the argument of the image. This is why 
the whole of the real axis in the z plane is mapped onto the positive real 
axis  of  the  w plane.  Likewise,  the  imaginary  axis  of  the  z plane  is 
mapped into a circle round the origin. The unit circle becomes rather 
distorted but note that angles are preserved because, like all functions 
with a polynomial expansion, it is analytic and hence conformal.

Now we have decided what we mean by  ei θ , we need to define what 
we mean by things like 2i θ and even  zi θ  where z is, of course, complex.

Now according to the ordinary rules which apply to exponents,

 a x
= b x logb(a)

 As usual we want the same rules to apply to complex numbers so we 
will define

 a z = e z log (a )

This is perfectly straightforward but if  a is itself a complex number 
ω then we have a slight problem. Obviously we require that:

 ωz = e z log (ω)
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but that means that we have to define log(ω)
Now  if  ω = r e i θ  then  in  order  to  be  consistent, 

log (ω) = log (r ) + i θ .  i.e.  the  (logarithm of  the) modulus  of   ω 
becomes the real coordinate and the argument becomes the imaginary 
coordinate. This is, of course, the inverse of the exponential function.

What does it look like? Well, the first thing to say is that the complex 
logarithm  is  a  multi-valued  function.  We  saw  that  the  exponential 
function winds the imaginary axis round and round the origin an infinite 
number of times. It follows that there are an infinite number of values of 
y in the ω plane  which map onto the same argument of log(ω). If we 
restrict ourselves to the values of y between –π and +π, This is what we 
get.

The first thing to notice is that it has a root at (1, 0). This is because 
the logarithm of 1 is zero. More importantly, it has a branch point at the 
origin and, unlike the branch points we have met before, this one is the 
meeting point of an infinite stack of discs!
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The real and imaginary plots of  log(ω) look like this:

The real part of log(ω) The imaginary part of log(ω)

Note that, as you would expect, the function has a singularity at 
the origin but that it is perfectly well behaved everywhere else. The 
imaginary plot is a continuous helical spiral.

Its map looks like this:

I
The exponential function mapped the  z plane multiple times round 

and round the origin; the logarithm function undoes this turning the unit 
circle back into the imaginary axis and mapping everything inside the 
unit circle onto the negative half of the w plane.

Note too that while log(–1) is undefined, there is no problem with the 
complex version log(–1). It is (0, (2n + 1)i) where n is any integer. 

Lets finish this  chapter with an example of a function in which a 

52



complex  variable  is  raised  to  a  complex  power.  For  example the 
function w = z(1 + i). 

Don't ask me to explain it – just marvel at it!
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The Zeta Function
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

No book on complex functions would be complete without a mention 
of one of the most extraordinary functions in all of mathematics – the 
Riemann zeta function.  It  is  a function of a complex variable and is 
defined in the following way:

ζ (z) =
1
1z +

1
2z +

1
3z +

1
4z ...

For example, if z = 2 then
ζ (2) =

1
12 +

1
22 +

1
32 +

1
42 ...

which turns out to be equal to π2/6 or 1.6449...
Calculating  the  values  when  z is  some  specific  complex  number 

turns out to be pretty complicated and special techniques are required 
for cases where the real value of z is less than 1 but it can be done and 
the result is illustrated below.

The modulus of w = zeta(z)

The illustration above shows the modulus (in 3D and the argument 
(in colour) in the region -1 < Re(z) < 3 and –2 < Im(z) < 2. It is obvious 
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that the function has a singularity at the point (1, 0). (This is because the 
sum of the infinite series 1/1 + 1/2 + 1/3 + 1/4 … is infinite.)

If we plot the function using a smaller scale on the imaginary axis 
(now plotted horizontally) we see that the modulus plot actually consists 
of a series of ridges and furrows parallel to the real axis.

The modulus of w = zeta(z) with the imaginary axis multiplied by 10

The singularity is the black area at (1, 0). Almost everywhere else, 
the modulus  of  the  function is  small  but  finite  except  at  a  series  of 
points along the so-called 'critical'  line where the real part  of  z is  ½ 
(indicated  by the yellow dotted  line).  At  these points  (known as  the 
'non-trivial zeros') the modulus is zero. The first of these zeros occurs at 
when  the  imaginary  part  is  approximately  14.  (The  function  is 
symmetrical about the real axis so there is another zero at (0.5 -14)). 
The second at approximately 21 and the third at 25.

You can see this a lot more clearly if we just plot a graph of the 
modulus along this critical line.
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The  points  where  the  modulus  'touches  down'  appear  to  be 
distributed quite randomly and there is no simple formula which will 
tell you where the nth zero will fall. Laborious computer calculations are 
needed  to  locate  the  precise  positions  of  the  zeros.  Indeed,  the  first 
mystery is why there are any zeros at all.

We do, however know that any zeros that do exist must lie in the 
'critical strip' between x = 0 and x = 1 and of the millions of zeros which 
have been calculated, every single one lies exactly on the critical line 
where x = ½. The famous 'Riemann hypothesis' is simply the assertion 
that all the zeros of the zeta function lie on the critical line.  

Riemann's  hypothesis  was  included  in  Hilbert's  famous  list  of 
unsolved  problems  in  1900.  It  remains  unproved  to  this  day. 
Mathematicians can be divided into three camps. There are those who 
firmly believe that the hypothesis is provable and that one day they will 
have the proof. Certainly there is a lot of evidence that the hypothesis is 
true. Using modern computers the positions of the first 2 million zeros 
have been calculated.  In addition,  many zeros way beyond this  have 
been calculated, so far in fact that on a scale of 1mm to the unit, the 
furthest zero would be over a light year away – and all have so far been 
found to lie on the line. But specific examples do not constitute a proof. 
They do, however, give many mathematicians encouragement that there 
is some deep reason why all the zeros lie on the line and that it should 
not be beyond the wit of man to discover it.

On the other hand, the wit of man has been unequal to the task for 
150  years.  This  has  caused  another  group  of  mathematicians  to 
speculate that, perhaps, the Riemann hypothesis is one of those famous 
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Gðdel  statement  that  are  true  but  unprovable.  If  so  the  situation  is 
similar  to  the  situation  facing  geometers  in  the  early  19th century. 
Euclid's famous 'parallel postulate' was proving to be unprovable on the 
basis  of the other  axioms of  the system – but  'obviously'  true.  Then 
came  Lobochevsky  who  showed  that  it  was  perfectly  possible  to 
construct an alternative geometry in which the parallel  postulate was 
false. What everyone had assumed up to that point was that geometry 
had to take place on a 'flat' surface. Could it be that there is some axiom 
of logic at the basis of number theory which we have so far unwittingly 
assumed  which  makes  the  Riemann hypothesis  true  but  unprovable? 
And could it be that a future Lobochevsky will identify this axiom and 
thereby generate  a  new mathematics  which  contains  all  the  familiar 
theorems of arithmetic but in which the Riemann hypothesis is false? 
Somehow I find this idea very unpalatable. Surely either the hypothesis 
is true – in which case there must be a  reason why it is true; or it is 
false,  in  which  case  it  is  worth continuing the  search  for  a  counter-
example.

There is a third option. The Riemann hypothesis is true and a proof 
of  the  hypothesis  exists  but  the  proof  is  so  complicated  that  it  will 
forever remain beyond the wit of man to devise it. If this is, in fact, the 
case, we shall have to rely on artificial intelligence to generate the proof 
for us. Even then, we will not necessarily be able to understand or check 
the proof which the computer has generated for us.

What is certain is that anyone who proves or disproves the Riemann 
hypothesis is destined for lasting fame.
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